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As used by music lovers, the term “solid state physics” refers only to the subject of
inhomogeneous semiconductors, and it would be more accurate if it were this latter
phrase that festooned the brows of countless tuners and amplifiers. The prevailing
usage reflects the fact that modern solid state physics has had its most dramatic
and extensive technological consequences through the electronic properties of semi-
conducting devices. These devices use semiconducting crystals in which the concen-
trations of donor and acceptor impurities have been made nonuniform in a carefully
controlled manner. We shall not attempt to survey here the great variety of semi-
conducting devices, but will only describe the broad physical principles that underlie
their operation. These principles come into play in determining how the densities and
currents of electrons and holes are distributed in an inhomogeneous semiconductor,
both in the absence and in the presence of an applied electrostatic potential.

The inhomogeneous semiconductors of interest are, ideally, single crystals in which
the local concentration of donor and acceptor impurities varies with position. One
way to make such crystals is to vary the concentration of impurities in the “melt”
as the growing crystal is slowly extracted, thus producing a variation in impurity
concentration along one spatial direction. Delicate methods of fabrication are needed
because it is generally important, for efficient operation, that there be no great increase
in electronic scattering associated with the variation in impurity concentration.

We shall illustrate the physics of inhomogeneous semiconductors by considering
the simplest example, the p-n junction. This is a semiconducting crystal in which the
impurity concentration varies only along a given direction (taken to be the x-axis)
and only in a small region (taken to be around x = 0). For negative x the crystal has
a preponderance of acceptor impurities (i.e., it is p-type) while for positive x it has a
preponderance of donor impurities (i.e, it is n-type) (Figure 29.1). The manner in
which the densities of donors and acceptors N (x) and N,(x) vary with position is

Figure 29.1
The impurity densities along
a p-n junction in the case of
an “abrupt junction,” for
which donor impurities dom-
inate at positive x, and
. > acceptor impurities at nega-
i fgmpurity density | tive S The dr:mors are r‘ep%z-
n-type. | sented by (+) to indicate
—MNj;  their charge when ionized,
! and the acceptors by (—).
For a junction to be abrupt,
on o el g < + + + + . theregion about x = Owhere
s the impurity concentrations
S T RNy _ ; . change must be narrow com-
' i e et gt — " pared with the “depletion
layer” in which the carrier
densities are nonuniform.
(Typical plots of the carrier
densities are superimposed
on this figure in Figure 29.3.)
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called the “doping profile.” The term “junction” is used to refer both to the device
as a whole and, more specifically, to the transition region about x = 0 in which the
doping profile is nonuniform.

As we shall see below, the nonuniformity in impurity concentrations induces a
nonuniformity in the densities n(x) and p,(x) of conduction band electrons and
valence band holes, which in turn gives rise to a potential ¢(x). The region in which
these carrier densities are nonuniform is known as the “depletion layer™ (or “space-
charge region”). The depletion layer can extend for a range of about 102 to 10* A
around the (generally more narrow) transition region in which the doping profile
varies, as we shall see below. Within the depletion layer, except near its boundaries,
the total density of carriers is very much less than it is in the homogeneous regions
farther away from the transition region. The existence of a depletion layer is one of
the crucial properties of the p-n junction, One of our main concerns will be to explain
why such a layer is induced by the variation in impurity concentrations, and how its
structure changes with the application of an external potential V.

For simplicity we shall consider here only “abrupt junctions,” in which the tran-
sition region is so sharp that variation in impurity concentrations' can be represented
by a single discontinuous change at x = 0:

N, 0
Nix) = { 0 - z 0}‘
N¥) = { ND’ : : g}. (29.1)

Abrupt junctions are not only conceptually the simplest, but also the type of greatest
practical interest. How sharp the actual transition region must be made for (29.1) to
give a reasonable model of a physical junction will emerge in the analysis below. We
shall find that a junction may be regarded as abrupt if the transition region in the
actual doping profile is small in extent compared with the depletion layer. In most
cases this permits the transition region to extend for 100 A or more. A junction that
cannot be treated as abrupt is called a “graded junction.”

THE SEMICLASSICAL MODEL

To calculate the response of an inhomogeneous semiconductor to an applied electro-
static potential, or even to compute the distribution of electric charge in the absence
of an applied potential, one almost always uses the semiclassical model of Chapter 12.
When a potential ¢(x) is superimposed on the periodic potential of the crystal, the
semiclassical model treats the electrons in the nth band as classical particles (i.e., as
wave packets) governed by the Hamiltonian

H, =&, (%) — ed(x)- (29.2)

11t is not essential that there be only donor impurities in the n-type region and only acceptor im-
purities in the p-type region. It suffices for each impurity type to be the dominant one in its own region.
In what follows N, may be viewed as the excess density of donors over acceptors and N, as the excess
density of acceptors over donors.
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Such a treatment is valid provided that the potential ¢(x) varies sufficiently slowly.
How slow this variation must be is, in general, a very difficult question to answer.
At the very least, one requires that the change in electrostatic energy eA¢ over a
distance of the order of the lattice constant be small compared with the band gap
E,, but the condition may well be even more stringent than this.? In the case of the
p-n junction the potential ¢ has almost all of its spatial variation within the depletion
layer. There, as we shall see, the energy e changes by about E,, over a distance that
is typically a few hundred angstroms or more (so that the field in the depletion layer
can be as large as 10° volts per meter). Although this satisfies the minimum necessary
condition for the validity of the semiclassical model (the change in e¢ over a lattice
constant is no more than a fraction of a percent of E,), the variation is strong enough
that one cannot exclude the possibility that the semiclassical description may break
down in the depletion layer. Thus one should bear in mind the possibility that the
field in the depletion layer may be strong enough to induce tunneling of electrons
from valence band to conduction band levels, leading to a conductivity considerably
in excess of the semiclassical prediction.

Having issued this warning, however, we shall follow the general practice of
assuming the validity of the semiclassical description, so that we may explore its
consequences. Before describing the semiclassical theory of the currents that flow in
a p-n junction in the presence of an applied potential. we first examine the case of the
p-n junction in thermal equilibrium, in the absence of applied potentials and current
flow.

THE p-n JUNCTION IN EQUILIBRIUM

We wish to determine the carrier densities and the electrostatic potential ¢(x) induced
by the nonuniform doping. We assume that nondegenerate conditions hold through-
out the material, so that the carrier densities at each position x have the “Maxwellian”
forms analogous to the densities (28.12) we found in the uniform case. In the non-
uniform case, to derive the carrier densities at position x along the junction in the
presence of a potential ¢(x), the semiclassical procedure is simply to repeat the
analysis for the uniform case, but using the semiclassical one-electron energy (29.2),
in which each level is shifted by — edb(x). Using the forms (28.3) of the &(k) appropriate
to levels near the conduction band minimum or valence band maximum, we see that
the effect of this is simply to shift the constants & and &, by —e¢(x). Thus Eq. (28.12)
for the equilibrium carrier densities is generalized to

n(x) = N(T)exp { _L& —ﬁ%— L]}
p(x) = P(T)exp {._ W} 29.3)

The potential ¢(x) must be determined self-consistently, as that potential arising
(via Poisson’s equation) when the carrier densities have the forms (29.3). We examine

2 A crude argument appropriate to metals is given in Appendix J. Analogous arguments (of com-
parable crudity) can be developed for semiconductors.
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this problem in the special case (again, the case of major practical interest) in which
far from the transition region on either side extrinsic conditions prevail, in which
the impurities are fully “ionized” (see pages 583—-584). Thus far away on the n-side
the density of conduction band electrons is very nearly equal to the density N, of
donors, while far away on the p-side the density of valence band holes is very nearly
equal to the density N, of acceptors:

Ny = nfo0) = NAT) exp {_ [ — e9(<0) — 1] p]}

kT
[—6, + P()fl(—ﬁo)]}‘

- (29.4)

N, = pr,('_m) = PI.'(T) CXP{—

Since the entire crystal is in thermal equilibrium, the chemical potential does not
vary with position. In particular, the same value of y appears in either of Eqs. (29.4);
this immediately requires that the total potential drop across the junction be given by?

I3
ed(c0) — ed(—o0) = & — &, + kpT'n [TV":] 29.5)
Or o v
i
NN, i
eAp = E, + kgTIn [Nipv]' ‘ (29.6)

An alternative way of representing the information in (29.3) and (29.6) is sometimes
helpful. If we define a position-dependent “electrochemical potential” ji(x) by

1) = 1+ edl), (29.7)

then we may write the carrier densities (29.3) as

nx) = NAT) exp{ [e. kﬁ;«fxl]}

pdx) = P{T) exp {— w} 9.8

These have precisely the form of the relations (28.12) for 2 homogeneous semi-
conductor, except that the constant chemical potential g is replaced by the electro-
chemical potential p(x). Thus y(cc) is the chemical potential of a homogeneous
n-type crystal whose properties are identical to those of the inhomogeneous crystal
far on the n-side of the transition region, while y (— o) is the chemical potential of
a homogeneous p-type crystal identical to the inhomogeneous crystal far on the
p-side. The relation (29.6) can equally well be written as*

el = ufeo) — pd— o). 29.9)

3 The derivation of (29.5) requires the validity of (29.3) only far from the depletion layer, where ¢ is
indeed slowly varying. It therefore holds even when the semiclassical model fails in the transition region.

4 This follows directly from (29.7). Equation (29.9) is sometimes summarized in the rule that the total
potential drop is such as to bring the “Fermi levels at the two ends of the junction™ into coincidence. This
point of view is evidently inspired by the representation of Figure 29.2b.
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Figure 29.2a shows the electrochemical potential plotted as a function of position
along the p-n junction. We have assumed (as will be demonstrated below) that ¢
varies monotonically from one end to the other. Figure 29.2b shows an alternative
representation of the same information in which the potential ¢ giving the position
dependence in (29.3) is regarded as shifting &, (or &,) rather than 1. In either case,
the significance of the diagrams is that at any particular position x along the junction,
the carrier densities are those that would be found in a piece of homogencous material
with the impurity concentrations prevailing at x, and with a chemical potential that
is positioned with respect to the band edges as shown in the vertical section of the
diagrams at x.

Figure 29.2

Two equivalent ways of repre-
senting the effect of the internal
potential ¢(x) on the electron and
hole densities of a p-n junction.
(a) The electrochemical potential
He(x) = p + egp(x) is plotted along
the p-n junction. The carrier den-
sities at any point x are those that
would be found in a uniform
semiconductor characterized by
the fixed band and impurity
energies &, &, &, and §,, at a
chemical potential equal to g (x).
(b) Here £{x) = & — ed(x) is the
energy of an electron wave packet
localized about x formed from
levels very near the conduction
band minimum, and similarly for
&(x). The energies of the local
mpurity levels are £,(x) = §; —
ed(x)and &(x) = &, — eg(x). The
(constant) chemical potential is
also shown. The carrier densities
at any point x are those that
would be found in a uniform
semiconductor characterized by
band and impurity energies equal
to E(x), Ex), &,(x), and £(x) at
the fixed chemical potential .

Equation (29.6) (or its equivalent form, (29.9)) serves as the boundary condition
in a differential equation determining the potential ¢(x). The differential equation
is simply Poisson’s equation,®

d2¢ 4mp(x)
s 2 —_— e e——E e——
Vg . e (29.10)

® Here € is the static dielectric constant of the semiconductor. The use of the macroscopic equation

is possible because ¢ varies over the depletion layer, which is large on the interatomic scale.
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relating the potential ¢(x) to the charge distribution p(x) giving rise to it. To express
p(x)in terms of ¢ and get a closed equation, we first note that if (as we have assumed)
the impurities are fully ionized far from the junction, then they will remain fully
ionized® at all x. Consequently the charge density due to the impurities and the
carriers is’
plx) = e[Nyx) — Nix) — nx) + pAx)]. (29.11)
When the carrier and impurity densities (29.3) and (29.1) are substituted into the
form (29.11) for the charge density, and the result is substituted into Poisson’s equation
(29.10), one finds a nonlinear differential equation for ¢(x) whose exact solution
usually requires numerical techniques.® However, a quite reasonable description of
$(x) may be had by exploiting the fact that the total change in e¢ is of order E, » kpT.
The relevance of this fact emerges when we combine (29.3) and (29.4) to write

n(x) = Nde—dfb(ﬂﬂ— da(x)]/kﬂ,
pux) = N fiee—dtoal/kd, (29.12)

Suppose that the change in ¢ occurs within a region —d,, < x < d,. Outside of this
region, ¢ has its asymptotic value, and therefore n, = N, on the n side, p, = N, on
the p side, and p = 0. Within the region, except quite near the boundaries, e¢ differs
by many kg7 from its asymptotic value, O 7, « Ng po « N, Thus, except in the
vicinity of x = —d, and x = d,, the charge density (29.11) between —d,, and d, is
quite accurately given by p(x) = e[ Ndx) — Nyx)], there being no appreciable carrier
charge to cancel the charges of the “jonized” impurities. The points x = —d, and
x = d, therefore mark the boundaries of the depletion layer.

Combining these observations, and using the form (29.1) for the impurity densities,
we find that except for x just greater than —d, or just less than d,, Poisson’s equation
is well approximated by

0, X2 ids;
— N,
ﬂq, d, > x>0, L
" — E
P =9 4 N, (29.13)
— 0>x> —d,
€
| O, —d, > x.

6 If ¢ is monotonic (as we shall find below) this follows from the fact that the degree of ionization of
an impurity increases, the farther the chemical potential is from the impurity level. See Figure 29.2 and
Egs. (28.32) and (28.34).

7 The density of holes on the far n-side has the very small value p{o0) = ni2/ N4 required by the law
of mass action. However, the density of electrons on the far n-side actually exceeds N, by this same small
amount so as to insure that n{o0) — pfeo) = N In computing the total charge density, if we ignore this
small correction in n, (as we have done in writing (29.4)). then we should also ignore the small compensating
density of holes on the far n-side. Similar remarks apply to the small concentration of electrons on the far
p-side. These “minority carrier densities” have negligible effect on the total balance of charge. We shall see
below, however, that they play an important role in determining the flow of currents in the presence of an
applied potential.

&  Some aspects of that equation are investigated in Problem 1.
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This immediately integrates to give

[ ¢(cc), x> d, ]

$(c0) — (@) (x — d)? d, > x>0,

H(x) =4 y (29.19)

$(—c0) + (Zn:N,,) (x+ ), 0>x>—d,

d){—OO), X < —dp.

The boundary conditions (continuity of ¢ and its first derivative) are explicitly obeyed
by the solution (29.14) at x = —d, and x = d,. Requiring them to hold at x = 0
gives two additional equations that determine the lengths d, and d,. Continuity of
¢’ at x = 0 implies that

Nad, = N, (29.15)

which is just the condition that the excess of positive charge on the n-side of the
junction be equal to the excess of negative charge on the p-side. Continuity of ¢ at
x = 0 requires that

(?) (Nad? + Ndp?) = ¢(e0) — ¢(—0) = Agh. @15

Together with (29.15) this determines the lengths d, and d:

(NN erd) M2
“ UN; + N,) 2ne|

(29.17)

H,p

To estimate the sizes of these lengths we may write Eq. (29.17) in the numerically
more convenient form

d

np

(Na/Na)*'
= 105{ e
107N, + N,)

The quantity ee A¢ is typically of order 1 eV, and since typical impurity concentra-
tions are in the range from 10'* to 10'® per cubic centimeter, the lengths d, and d,,
which give the extent of the depletion layer, will generally be from 10* to 10? A. The
field within the depletion layer is of order A¢/(d, + d,), and for d’s of this size is
therefore in the range from 10° to 107 volts per meter, for an energy gap of 0.1 eV.

The resulting picture of the depletion layer is shown in Figure 29.3. The potential
¢ varies monotonically through the layer, as asserted above. Except at the boundaries
of the layer, the carrier concentrations are negligible compared with the impurity
concentrations, so the charge density is that of the ionized impurities. Outside of the
depletion layer the carrier concentrations balance the impurity concentrations, and
the charge density is zero.

The mechanism establishing such a region of sharply reduced carrier densities is
relatively simple. Suppose that one initially were able to impose carrier concentrations
that gave charge neutrality at every point in the crystal. Such a configuration could
not be maintained, for electrons would begin to diffuse from the n-side (where their
concentration was high) to the p-side (where their concentration was very low), and

1/2
[ee chb]cv} A. (29.18)



Figure 29.3

(a) Carrier densities, (b) charge den-
sity, and (c¢) potential ¢(x) plotted
vs. position across an abrupt p-n
Jjunction. In the analysis in the text
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the approximation was made that
the carrier densities and charge den-
sity are constants except for discon-
tinuous changes at x = —d, and
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holes would diffuse in the opposite direction. As this diffusion continued, the result-
ing transfer of charge would build up an electric field opposing further diffusive
currents, until an equilibrium configuration was reached in which the effect of the
field on the currents precisely canceled the effect of diffusion. Because the carriers
are highly mobile, in this equilibrium configuration the carrier densities are very low
wherever the field has an appreciable value. This is precisely the state of affairs
depicted in Figure 29.3.

ELEMENTARY PICTURE OF RECTIFICATION BY A p-n JUNCTION

We now consider the behavior of a p-n junction when an external voltage V is applied.
We shall take V to be positive if its application raises the potential of the p-side with
respect to the n-side. When ¥ = 0 we found above that there is a depletion layer
some 10% to 10* A in extent about the transition point where the doping changes
from p-type to n-type, in which the density of carriers is reduced greatly below its
value in the homogeneous regions farther away. Because of its greatly reduced carrier
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density, the depletion layer will have a much higher electrical resistance than the
homogeneous regions, and the whole device can therefore be viewed as a series circuit
in which a relatively high resistance is sandwiched between two relatively low resis-
tances. When a potential V' is applied across such a circuit, almost all of the potential
drop will occur across the region of high resistance. Thus even in the presence of an
applied potential V, we expect that the potential ¢(x) along the device will vary
appreciably only within the depletion layer. When ¥ = 0 we found that ¢(x) rose
from the p-side of the depletion layer to the n-side by the amount (which we now
denote by (Ad),) given by Eq. (29.6), so we conclude that when V # 0 the change in
potential across the depletion layer is modified to

A = (Ad)y — V. (29.19)

Associated with this change in potential drop across the depletion layer, there is a
change in the size of the layer. The lengths d, and d, giving the extent of the layer on
the n- and p-sides of the junction are determined by Eqgs. (29.15) and (29.16), which
use only the value of the total potential drop across the layer, and the assumption
that the carrier densities are greatly reduced throughout almost all of the layer. We
shall find below that this assumption remains valid when V # 0, and therefore d,
and d,, continue to be given by Eq. (29.17) provided that we take the value of A¢ to be
(Ad)o — V. Since d, and d,, vary as (A¢)'/? according to Eq. (29.17), we conclude that
when V' # 0,

oz
di V) =4d, 0|1 ———1| . 29.20
(V) ol ][ @ ¢}O:' (29.20)

This behavior of ¢ and the extent of the depletion layer are illustrated in Figure 29.4.
To deduce the dependence on ¥V of the current that flows when a p-n junction is
“biased” by the application of an external voltage, we must consider separately the
currents of electrons and holes. Throughout the discussion that follows we shall use
the symbol J for number current densities and j for electrical current densities, so that

Je= —elo, jy=ely. (29.21)

When V = 0, both J, and J,, vanish. This does not, of course, mean that no individual
carriers flow across the junction, but only that as many electrons (or holes) flow in
one direction as in the other. When V' # 0, this balance is disrupted. Consider, for
example, the current of holes across the depletion layer. This has two components:

1. A hole current flows from the n- to the p-side of the junction, known as the hole
generation current. As the name indicates, this current arises from holes that are
generated just on the n-side of the depletion layer by the thermal excitation of
electrons out of valence band levels. Although the density of such holes on the
n-side (“minority carriers”) is minute compared with the density of electrons
(“majority carriers”), they play an important role in carrying current across the
Junction. This is because any such hole that wanders into the depletion layer is
immediately swept over to the p-side of the junction by the strong electric field
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Figure 29.4

The charge density p and potential ¢ in the depletion
layer (a) for the unbiased junction, (b) for the junction
with V > 0 (forward bias), and (c) for the junction
with V' < 0 (reverse bias). The positions x = d, and
x = —d, that mark the boundaries of the depletion
layer when V' = 0 are given by the dashed lines. The
depletion layer and change in ¢ are reduced by a
forward bias and increased by a reverse bias.
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that prevails within the layer. The resulting generation current is insensitive to
the size of the potential drop across the depletion layer, since any hole, having
entered the layer from the n-side, will be swept through to the p-side.®

2. A hole current flows from the p- to the n-side of the junction, known as the hole
recombination current.'® The electric field in the depletion layer acts to oppose
such a current, and only holes that arrive at the edge of the depletion layer with
a thermal energy sufficient to surmount the potential barrier will contribute to

9 The density of holes giving rise to the hole generation current will also be insensitive to the size of
V, provided that e} is small compared with Ej, for this density is entirely determined by the law of mass
action and the density of electrons. The latter density differs only slightly from the value N, outside of the
depletion layer when eV is small compared with E_, as will emerge from the more detailed analysis below.
16 8o named because of the fate suffered by such holes upon arriving on the n-side of the junction,
where one of the abundant electrons will eventually drop into the empty level that constitutes the hole.
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the recombination current. The number of such holes is proportional to e~ ®#/*BT,
and therefore!!
Jie oc @~ lAdlo~ VUkpT, (29.22)

In contrast to the generation current, the recombination current is highly sensitive
to the applied voltage V. We can compare their magnitudes by noting that when
V = 0 there can be no net hole current across the junction:

I =0 = I (29.23)
Taken together with Eq. (29.22), this requires that
Ji = JpmpV e (29.24)

The total current of holes flowing from the p- to the n-side of the junction is given by
the recombination current minus the generation current:

J, = J5 — Ji° = Jio(eV T — 1), (29.25)

The same analysis applies to the components of the electron current, except that
the generation and recombination currents of electrons flow oppositely to the corre-
sponding currents of holes. Since. however, the electrons are oppositely charged, the
electrical generation and recombination currents of electrons are parallel to the
electrical generation and recombination currents of holes. The total electrical current
density is thus:

Jj = eJg" + JE) (VBT — 1), (29.26)

This has the highly asymmetric form characteristic of rectifiers, as shown in Figure
29.5.

Figure 29.5

Current vs, applied voltage V for a
p-n junction. The relation is valid
for eV small compared with the
energy gap, E,. The saturation
current (eJ;™ + eJi™) varies with
temperature as ¢~ 87, as estab-
lished below.

JV)=eUE™ + JEm) @V P87 - 1)

11—

Fu_rward bias

[ — -

—e (/g + JEemy

11 In assuming that (29.22) gives the dominant dependence of the hole recombination current on ¥,
we are assuming that the density of holes just on the p-side of the depletion layer differs only slightly from
N, We shall find that this is also the case provided that el is small compared with the energy gap E,,
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GENERAL PHYSICAL ASPECTS OF THE NONEQUILIBRIUM CASE

The foregoing discussion provides no estimate of the size of the prefactor e(Ji" + Jeny
appearing in (29.26). In addition, in the nonequilibrium (V # 0) case the local carrier
densities will not in general be determined by the local potential ¢ through the simple
equilibrium Maxwellian relations (29.3). In the nonequilibrium case it requires further
analysis to construct a picture of the carrier densities in the neighborhood of the
transition region that is comparable in detail to the picture we gave for the equilibrium
case.

In this more detailed approach it is not especially helpful to resolve the electron
and hole currents across the junction into generation and recombination currents.
Instead, at each point x (both inside and outside the depletion layer) we shall write
equations relating the total electron and hole currents, Jo(x) and J,(x), the electron
and hole densities, n(x) and p,(x), and the potential ¢(x) (or, equivalently, the electric
field, E(x) = —d¢(x)/dx). We shall find five such equations, which will enable us, in
principle, to find these five quantities. This method is a direct generalization of the
approach we followed in our analysis of the equilibrium (V = 0) case. In equilibrium
the electron and hole currents vanish, there are only three unknowns, and the three
equations we used were Poisson’s equation, and the two equations (29.3) that relate
n{x) and p,(x) to ¢(x) in thermal equilibrium. Thus the nonequilibrium problem can
be viewed as that of finding the appropriate equations to replace the equilibrium
relation (29.3), when V s 0 and currents flow,

We first observe that in the presence of both an electric field and a carrier density
gradient, the carrier current density can be written as the sum of a term proportional
to the field (the drift current) and a term proportional to the density gradient (the
diffusion current):

dn,
Je = _nun”rE - DH .
dx
Ip.
Jv = uppE — D, P (29.27)
dx
j

The positive'? proportionality constants g, and y, appearing in Eq. (29.27) are
known as the electron and hole mobilities. We have introduced the mobilities, rather
than writing the drift current in terms of conductivities, to make explicit the manner
in which the drift current depends on the carrier densities. 1f only electrons at uniform
density are present, then 6E = j = —eJ, = epnE. Using the Drude form ¢ =
ne*t/m for the conductivity (Eq. (1.6)) we find that

é’T:ﬂn

Mo = ——, (29.28)

nmy,

2 The signs in Eq. (29.27) have been chosen to make the mobilities positive; the hole drift current is
along the field, and the electron drift current is opposite to the field.
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and, similarly,

ty = =2, (29.29)

where m, and mj, are the appropriate effective masses, and ;" and 73" are the carrier,
collision times.'?

The positive!* proportionality constants D, and D, appearing in Eq. (29.27) are
known as the electron and hole diffusion constants. They are related to the mobilities
by the Einstein relations:'?

D _ €D,
L T T

s (29.30)

The Finstein relations follow directly from the fact that the electron and hole currents
must vanish in thermal equilibrium: Only if the mobilities and diffusion constants
are related by (29.30) will the currents given by (29.27) be zero when the carrier
densities have the equilibrium form (29.3)'© (as is easily verified by direct substitution
of (29.3) into (29.27)).

The relation (29.27) giving the currents in terms of the density gradients and field,
together with the forms (29.28)—(29.30) for the mobilities and diffusion constants,
can also be derived directly from the kind of simple kinetic argument used in Chapter 1
(sce Problem 2).

Note that in thermal equilibrium, Eq. (29.27) and the conditions J, = J, = 0
contain all information necessary to determine the carrier densities, for when the
currents vanish we may integrate Eq. (29.27) to rederive (with the aid of the Finstein
relations (29.30)) the thermal equilibrium densities (29.3). When V s 0 and currents
flow, we require a further equation, which can be viewed as the generalization to
the nonequilibrium case of the equilibrium conditions of vanishing currents. If the
numbers of carriers were conserved, the required generalization would simply be
the equations of continuity,

on_ o,
ot &x’
ap, daJ,,
) .31
ot ox’ 25y

which express the fact that the change in the number of carriers in a region is entircly
determined by the rate at which carriers flow into and out of the region. However,
carrier numbers are not conserved. A conduction band electron and a valence band

13 In semiconductors there is another lifetime of fundamental importance (see below), the recom-
bination time. The superscript “coll” has been affixed to the collision mean free times to distinguish thermn
from the recombination times.

14 They are positive because the diffusion current flows from high- to low-density regions. In zero
field, Eq. (29.27) is sometimes known as Fick’s law.

15 The Einstein relations are very general, arising in any treatment of charged particles that obey
Maxwell-Boltzmann statistics, such as the ions in an electrolytic solution.

16 The generalization of (29.30) to the degenerate case is described in Problem 3.
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hole can be generated by the thermal excitation of an electron out of a valence band
level. Furthermore a conduction band electron and a valence band hole can recombine
(i.c., the electron can drop into the empty level that is the hole), resulting in the
disappearance of one carrier of each type. Terms must be added to the continuity
equations describing these other ways in which the number of carriers in a region

can change:
on, _ fdn, aJ,
g \d&t)., o

dp, _ (dp, aJ,
- == - — 29.3
at ( di )g_, dx @38

To determine the forms of (dn./dt),., and (dp,/dt),., we note that generation and
recombination act to restore thermal equilibrium when the carrier densities deviate
from their equilibrium values. In regions where n, and p, exceed their equilibrium
values, recombination occurs faster than generation, leading to a decrease in the
carrier densities, while in regions where they fall short of their equilibrium values,
generation occurs faster than recombination, leading to an increase in the carrier
densities. In the simplest models these processes are described by electron and hole
lifetimes,'” 7, and 7. The rate at which each carrier density changes due to recom-
bination and generation is set proportional to its deviation from the form determined
by the other carrier density and the law of mass action (28.24):

dnl) - _ (e — ne)
o, &

(dp_g) _ (= p) (29.33)

dt T,

where n{ = nf/p,, and p = ni/n,.
" Tointerpret these equations, note that the first, for example, expresses the change
in electron carrier density due to generation and recombination in an infinitesimal
time dt as
nft + di) = (1 — d—!) nlt) + (ﬁ) nZ. (29.39)
T T,

The first term on the right of Eq. (29.34) expresses the destruction, through recom-
bination, of a fraction dt/t, of the electron carriers; i.e., 7, is the average electronic
lifetime before recombination occurs. The second term on the right expresses the
creation through thermal generation of n°/r, electron carriers per unit volume, per
unit time. Note that, as required, Eqs. (29.33) give carrier densities that decrease
when they exceed their equilibrium values, increase when they are less than their
equilibrium values, and do not change when they are equal to their equilibrium
values.

The lifetimes 7, and 1, are generally much longer than overall electron or hole

collision times, t5™" and 7, for the recombination (or generation) of an electron

17 Also known as “recombination times.” Conservation of total electric charge requires that the
recombination rates be proportional to the densities of the other carrier type: (1/5,)/(1/7,) = p./n..
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and a hole is an interband transition (electron goes from valence to conduction
band (generation) or conduction band to valence band (recombination)). Ordinary
collisions, which conserve the number of carriers, are intraband transitions. Reflecting
this, typical lifetimes range between 10™% and 10~ # second, while the collision times
are similar to those found in metals—i.e., 1072 or 1072 second.

In the presence of a static external potential the p-n junction, though not in thermal
equilibrium, is in a steady state; i.e., the carrier densities will be constant in time:
dn./dt = dp,/dt = 0. Using this fact and the forms (29.33) for the rates at which
recombination and generation change the carrier densities, we find that the continuity
equation (29.32) requires

dJ n —n |
e £ =, |
dx ¥ T
dJ —p
_a__x_l! + pu . pl.l = 0‘ {29.35)
L |
J

These are the equations that replace the equilibrium conditions J, = J, = 0, when
V# 0.

One very important application of Eqs. (29.35) and (29.27) is in regions where
the electric field E is negligibly small and the majority carrier density is constant.
In that case the minority carrier drift current can be ignored compared with the
minority carrier diffusion current, and Eqgs. (29.27) and (29.35) reduce to a single
equation for the minority carrier density with a constant recombination time:

0
d*n. n.—n

P

2 o (E ~ 0) (29.36)
D d pu_pv_pv
P g,

The solutions to these equations vary exponentially in x/L, where the lengths
Ln S {Dntu)uz’ Lp = (Dpzp)”z) (29‘37)

are known as the electron and hole diffision lengths. Suppose, for example, (to take
a case that will be of some importance below) that we are in the region of uniform
potential on the n-side of the depletion layer, so that the equilibrium density P9 has
the constant value p,(c0) = n;2/N,. If the density of holes is constrained to have the
value p,(x,) # p,(o0) at a point x,, then the solution to Eq. (29.36) for x > x, is

Po(¥) = p(o0) + [plxo) — pu(o0)]e™* *oVle, (29.38)

Thus the diffusion length is a measure of the distance it takes for the density to relax
back to its equilibrium value.

One would expect that the distance L over which a deviation from equilibrium
density can be maintained would be roughly the distance a carrier can travel before
undergoing recombination. This is not immediately obvious from the forms (29.37)
for the diffusion lengths L, and L,, but it is revealed when one rewrites (29.37) using
(a) the Einstein relations (29.30) between the diffusion constant and the mobility,
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(b) the Drude form (29.28), or (29.29), for the mobility, (c) the relation 4mp, 2 = 3k, T
between the mean square carrier velocity and the temperature under nondegenerate
conditions, and (d) the definition £ = v,,7*" of the carrier mean free path between
collisions. Making these substitutions one finds:

T 1/2
Lh = (3tcoll) [",

Lf2
g, ~f 2B g (29.39)
P 31,: ;oll P

Assuming that the direction of a carrier is random aftei each collision, a series of
N collisions can be viewed as a random walk of step length £. It is easily shown!®
that in such a walk the total displacement is N'2(. Since the number of collisions a
carrier can undergo in a recombination time is the ratio of the recombination time
to the collision time, Eq. (29.39) does indeed show that the diffusion length measures
the distance a carrier can go before undergoing recombination.

Using the typical values given on page 604 for the collision time and the (very
much longer) recombination time, we find that (29.39) gives a diffusion length that
can be between 102 and 10° mean free paths.

We can estimate the size of the generation currents that appear in the I-V relation
(29.26), in terms of the diffusion lengths and carrier lifetimes. We first note that, by
definition of the lifetime, holes are created by thermal generation at a rate p:,’ftp per
unit volume. Such a hole stands an appreciable chance of entering the depletion layer
(and then being swiftly swept across to the n-side) before undergoing recombination,
provided that it is created within a diffusion length L, of the boundary of the depletion
layer. Therefore the flow of thermally generated holes per unit area into the depletion
layer per second will be of order L pg/z,. Since p? = n?/N,, we have

n? I8
N By .40
Ji (N.:) = (29.40)
and, similarly,
2\ L,
gen i _”‘ T
J2 ( .'\_'“) =1 (29.41)

The sum of the currents appearing in (29.40) and (29.41) is known as the satura-
tion current, since it is the maximum current that can flow through the junction
when Vis negative (“reversed bias”). Because the temperature dependence of n? is
dominated by the factor ¢~ %¢*8" (Eq. (28.19)), the saturation current is strongly
temperature-dependent.

A MORE DETAILED THEORY OF THE NONEQUILIBRIUM p-n
JUNCTION

Using the concepts of drift and diffusion currents we can give a more detailed
description of the behavior of the p-n junction when ¥ # 0. The equilibrium p-n

19 See for example, F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New
York, 1965, p. 16.
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junction has two characteristic regions: the depletion layer, in which the electric
field, space charge, and carrier density gradients are large, and the homogencous
regions outside of the depletion layer, in which they are quite small, In the non-
equilibrium case the position beyond which the electric field and space charge are
small differs from the position beyond which the carrier density gradients are small.
Thus when ¥ # 0, the p-n junction is characterized not by two, but by three different
regions (described compactly in Table 29.1):

1. The Depletion Layer As in the equilibrium case, this is a region in which the
electric field, space charge, and carrier density gradients are all large. When V # 0,
according to Eq. (29.20) the depletion layer is narrower than or wider than
is the case for V' = 0 depending on whether V is positive (forward bias) or
negative (reverse bias).

2. The Diffusion Regions These are regions (extending a distance of the order of
a diffusion length out from the boundaries of the depletion layer) in which the
electric field and space charge are small. but the carrier density gradients remain
appreciable (though not as large as in the depletion layer).

3. The Homogeneous Regions Beyond the diffusion regions the electric field, space
charge, and carrier density gradients are all very small, as in the equilibrium
homogeneous regions.

The diffusion region (2) is not present in the equilibrinm case. It arises when V # 0
for the following reason:

In equilibrium (¥ = 0) the change in carricr densities across the depletion layer
is just enough to join the homogeneous equilibrium values on the high-density sides
(n{=0) = Ny, pf—0) = N,), to the homogeneous equilibrium values on the low-
density sides'? (n(—o0) = n2/N,, p{+0) = n?/N,). When V # 0, however, we
have noted that the extent of the depletion layer and the size of the potential drop
across the layer differ from their equilibrium values. Consequently (as we shall see
explicitly below) the change in carrier densities across the layer can no longer fit
the difference in the homogeneous equilibrium values appropriate to the two sides,
and a further region must appear in which the carrier densities relax from their values
at the boundaries of the depletion layer to the values appropriate to the more remote
homogeneous region (Figure 29.6).

Table 29.1 summarizes these properties, and also indicates the characteristic
behavior of the electron and hole driflt and diffusion currents in each of the three
regions, when a current j flows in the junction?°:

1. Inthedepletion layer there are both drift and diffusion currents. In the equilibrium
casc they are equal and opposite for each carrier type, yielding no net currents of

9 In discussing the equilibrium case above, we approximated the minority carrier densities (i.e., the

homogeneous equilibrium values on the low-density side) by zero (cf. note 7). This was appropriate because
we were describing only the space-charge density, to which the minority carriers make a minute contribu-
tion compared with the majority carriers. The contribution of the minority carriers to the current, however,
is not negligible, and it is necessary for us to use the values quoted here (determined by the values
of the majority carrier densities and the law of mass action).

2 In the steady state the total electric current is uniform along the junction: j cannot depend on x.
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Figure 29.6

V> 0 (forward bins) The density of holes (heavy

—=E= curve) along a p-n junction
with V > 0 (forward bias).
e IMII 5 The vertical solid lines give

the boundaries of the deple-
tion layer and diffusion re-
gions. Note the break in
vertical scale. For compari-
son, the density of holes when
V = 0 (unbiased junction) is
shown as a light curve,
together with the boundaries
of the depletion layer in the
unbiased case (dashed verti-
cal lines). The density of
electrons behaves in a similar

 Peledp) =N, b d) |

i) = manner. When V is negative

po(e) Ve - (reverse bias), the density of

o Pu(ed) =N_' ho{cﬁ falls bfelow its fxsyn.}p—

\/ 2 totic value in the diffusion

——— x region. Note that although

F—O(r) d,+d, OLy) the excess density m the

biased case over the unbiased
case has the same size in both
diffusion regions, on the p-
side it represents a minute
percentage change in the
carrier density, while on the
n-side it is a very large per-
centage change.

df+d]

electrons or holes. In the nonequilibrium case the net current flowing across the
depletion layer results from a slight imbalance between the drift and diffusion
currents of each carrier type; i.c, the drift and diffusion currents are separately
quite large compared with the total current. Once we have constructed a complete
picture of the currents flowing in the junction it is easy to verify this explicitly
(Problem 4). Itis a consequence of the very large electric field and density gradients
in the diffusion layer (which more than compensate for the very low carrier
densities).

2. In the diffusion regions, the carrier densities are nearer to the values they have
in the homogeneous regions. The majority carrier density has become so large
that its drift current is appreciable, even though the field is now very small;
the minority carrier drift current is quite negligible in comparison. Because the
carrier densities continue to vary in the diffusion regions, both diffusion currents
(proportional not to the density, but its gradient) are appreciable. Typically,
all currents in the diffusion region except the negligible minority carrier drift
current are of order j.

3. In the homogeneous regions the diffusion currents are negligible, and the entire
current is carried by the majority carrier drift current.
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Given this picture of the individual carrier drift and diffusion currents, we can
readily calculate the total current j flowing in the junction for a given value of V. To
simplify the analysis we make one further assumption:*! We assume that the passage
of carriers across the depletion layer is so swift that negligible generation and
recombination occur within the layer. If this is so, then the total currents of electrons
and holes, J, and J,, will be constant across the depletion layer in the steady state.
Consequently, in the expression j = —eJ, + eJ, for the total current, we may
scparately evaluate J, and J, at whatever points along the depletion layer it is most
convenient to do so. The most convenient point for the electron current is at the
boundary between the depletion layer and the diffusion region on the p-side, and the
most convenient point for the hole current is at the other boundary.2? We therefore
write

j= _eje[_dp) + e‘!h{dn}' (29'42)

This representation is useful because at the boundaries between the depletion
layer and the diffusion regions the minority carrier currents are purely diffusive
(see Table 29.1). Consequently, if we could calculate the position dependence of the
minority carrier densities within the diffusion regions, we could immediately compute
their currents, using Eq. (29.27) (with E = 0):

dn,
Jd=dp) = D, dxfx=—yg’
X = = p
d v
Jid) = ~D, d—fc . (29.43)
x=dp

Because, however, the minority carrier drift currents are negligible in the diffusion
regions, the minority carrier densities satisfy the diffusion equation (29.36). If we
let p,(d,) be the density of holes at the boundary of the depletion layer on the n-side,
and if we note that far from that boundary on the n-side p, approaches the value
p0) = n% /N, then the solution (29.38) to the diffusion equation (29.36) is

n;? n;?
Px) = f\:'_ + [p.,(dn) - N_] e iy x> 4. (29.44)
. d d
Similarly, the electron density within the diffusion region on the p-side is given b
Y g Y
”"2 niz Ax+d L
nlx) = 3 + | nd—d,) — N [P x < —d, (29.45)

Substituting these densities into (29.43) we find that the minority carrier currents
at the boundaries of the depletion layer are

J~d) = - %[nf(—d,) -}

'n a

D 2
Juldy) = L—" [p,,-(dn] - %] (29.46)

4

*' Also generally the case. When the assumption fails, the full set of equations must be integrated
across the depletion layer.

22 The more elementary picture of rectification given above also focused on the electron current
originating on the hole sid~ ~F the Junction, and vice versa,
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so that the total current, (29.42), is

. eDn l]-z ej)p H.Z
) i (| LT = | 29.4
J T I:n,( dy,) Na] + L, [pt(d,,) Ndil (29.47)

It only remains for us to find the amounts by which the minority carrier densities
differ from their homogeneous equilibrium values at the boundaries of the depletion
layer. In equilibrium we found the variation in carrier densities across the depletion
layer by using the equilibrium expression (29.3) for the variation of the carrier densities
in a potential ¢(x). We have noted above that this expression follows from the fact
that in equilibrium the drift currents are equal and opposite to the diffusion currents.
In the general nonequilibrium case (e.g., in the diffusion region) the drift and diffusion
currents are not in balance, and Eq. (29.3) does not hold. However, in the depletion
layer there is a near balance between drift and diffusion currents,”® and therefore
to a reasonable approximation the carrier densities do obey Eq. (29.3), changing by
a factor e “*¢*8T a5 the depletion layer is crossed:

ﬂc( - dp) - np(dn)e—cM!kBT — [nc(d,,]e_e(MJU‘"‘BT]e“V”‘BT,
Pu(dn) - pu( . dp)e —eldpfkgT _ [pv( L o8 dp)e o= e{dd‘)(}ﬁ(af]eewkg'r . {29-48)

When eV « E,, then V will be small compared with (A¢),, and the carrier densities
on the minority side [n(—d,) and p,(d,)] will continue to be very small compared
with their values of the majority side [n/d,) and p(—d,)], just as they are when
V' = 0. Consequently, the conditions that the space charge vanish at the boundaries
of the depletion layer,
nc(dn) - pv(du) = Nd‘l
pd—dp) — n{~d,) = N,, (29.49)

give values for the majority carrier densities n,(d,) and p,(—d,) that differ from their
equilibrium values N, and N, only by factors that are very close to unity. Thus, to
an excellent approximation, when eV « E,

n{—d,) = [N de—etﬁﬂo!ksj‘] *VIkaT,

Pldy) = [Nge™ c@PolkBT ]V kBT, (29.50)
or, equivalently,®*
n
n{—d,) = . gl
n?
pd,) = — eV*aT, (29.51)
Ny

Substituting these results into the expression (29.47) for the total current, we find
that
D

D
AR n i VikgT _ 1), 29.52
j=en (L” . L,,Na) @ ) @52

23 This is verified in Problem 4.

24 This follows from the form (29.6) of (Ad)y and the form (28.19) of ;. It also follows directly from
(29.50) by requiring that it yield the correct equilibrium values nf{—d,) = n?/N, and pJd,) = n?/N,,
when V = (.
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This has the form (29.26) with the generation currents given explicitly by

2
Jgecn a— n; _I)_"‘,
N,/ L,
n? D,
= [ —]=-L. 29.53
U (Nd)L,, | (29.53)
If we eliminate the diffusion constants appearing in (29.53) with the aid of (29.37),

the expressions for the generation currents agree with the rough estimates (29.40)
and (29.41).

PROBLEMS

1. The Depletion Layer in Thermal Equilibrium

(a) Show that if the exact (nondegenerate) form (29.3) is retained for the carrier densities,
then Poisson’s equation (which we approximated by Eq.(29.13) in the text) becomes the following
differential equation for the variable y = (e¢ + pt — w)ikaT:

2

X (sinh v-= {")), C(2954)

dx 2

where K2 = &mne?/kyTe, AN(x) is the doping profile, AN(x) = Ny(x) — Nx), and n; and gy

are the carrier density and chemical potential for an impurity-free sample at the same temperature.
(b) The text discussed the case of a p-n junction made of highly extrinsic material, with

Ny, N, > n;. In the opposite case of a lightly doped nearly intrinsic semiconductor, with

n » Ny N, (29.55)
we can find the electrostatic potential to high precision for an arbitrary doping profile, as follows:

(i) Assume that  « 1, so that sinh ¥ = . Show that the solution to (29.54) is then given
by:
0 AN(x')

- 1 - Klx—x'|
W) =K LC dx' e - (29.56)

i

(i) Show that this solution and (29.55) imply that  is indeed much less than 1, justifying
the initial ansatz.

(iii) Show that if AN varies along more than one dimension, then in the nearly intrinsic

case:
- KJr—r]

o) =e ja’r’ AN(r) lfr_—r,l_ (29.57)

(iv) The above result is identical in form to the screened Thomas-Fermi potential produced
by impurities in a metal [Eq. (17.54)]. Show that the Thomas-Fermi wave vector [Eq. (17.50)]
for a free electron gas has precisely the form of K, except that ry must be replaced by the thermal
velocity appropriate to Boltzmann statistics, and the carrier density must be taken as 2n,. (Why
this last factor of 27) The quantity K is the screening length of Debye-Hiickel theory.
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(c} Some insight into the general solution to (29.54) may be gained by the simple expedient
of changing the names of the variables:
Y —u x-—1 K2 —rﬁ. (29.58)
The equation then describes the displacement u of a particle of mass m moving under the mfluence
of a force that depends upon position (1) and time (t). In the case of an abrupt junction this force
is time-independent before and after ¢+ = 0. Sketch the “potential energy” before and aftert = 0,
and deduce from your sketch a qualitative argument that the solution to (29.54) that becomes
asymptotically constant as x — -+ 0o can vary appreciably only in the neighborhood of x = 0.
(d) Show that conservation of “energy” before and after t = 0 in the mechanical model for
the abrupt junction described above permits one to show that the exact potential at x = 0 is
that given by the approximate solution (29.14) plus a correction A¢, given by:

np N (T — [T
e N;+ N,
Comment on how important a correction to ¢ this is, and how reliable the carrier densities

(29.12) given by the approximate solution (29.14) are likely to be in the depletion region.
(e} Asin (d), find and discuss the approximate and exact electric fields at x = Q.

(29.59)

2. Derivation of the Einstein Relations from Kinetic Theory

Show thar the phenomenological equations (29.27) relating the carrier currents to the electric
field and carrier density gradients, follow from elementary kinetic arguments such as were used
in Chapter I, with mobilities of the form (29.28) and (29.29), and diffusion constants of the form

D = $p?)yren (29.60)

Show that the Einstein relations (29.30) are satisfied provided the mean square thermal velocity
(v} is given by Maxwell-Boltzmann statistics.

3. Einstein Relations in the Degenerate Case
When dealing with degenerate inhomogeneous semiconductors one must generalize the equi-
librium carrier densities (29.3) to

n(x) = n¢ (n + ed(x)).
px) = p) (1 + ed(x)), (29.61)

where n’(p1), and pl(y) are the carrier densities of the homogeneous semiconductor as a function
of chemical potential >*
(a) Show that the expression (29.9) for A¢d and the interpretation that precedes it continue
to follow directly from (29.61).
(b) Show by a slight generalization of the argument on page 602 that
1én D 1('3p

= eDay =ty = —eDy ol (29.62)

25 Note that the functional forms of nf () and p{ (1) do not depend on the doping (though of course
the value of p does).
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(c) In aninhomogeneous semiconductor, not in equilibrium, with carrier densities n(x) and
and p,(x), one sometimes defines electron and hole quasichemical potentials®® i(x) and fi,(x) by
requiring the carrier densities to have the equilibrium form (29.61):

n{x) = n (10 + edp(x)), p(x) = pS (Bxx) + ed(x)). (29.63)

Show that, as a consequence of the Einstein relations (29.62), the total drift plus diffusion currents
are just

a1
Je = — Uy E E He(x}»
a1
Jb = Wby I ¢ P (29.64)

Note that these have the form of pure drift currents in an electrostatic potential ¢ = (—1/e)ji.

4.  Drift and Diffusion Currents in the Depletion Layer

Noting that the electric field in the depletion layer is of order Ad/d, d = d, + d,, and that the
carrier densities there exceed their minority values substantially (except at the edges of the layer),
show that the assumption that the drift (and hence diffusion) currents in the depletion layer greatly
exceed the total current is very well satisfied.

5. Fields in the Diffusion Region
Verify the assumption that the potential ¢ undergoes negligible variation in the diffusion region,
by estimating its change across the diffusion region as follows:

(a) Find the electron drift current at d, by noting that the total electron current is continuous
- across the depletion layer and calculating explicitly the electron diffusion current at d,.

(b) Noting that the electron density is very close to N, at d,, find an expression for the electric
field at d, necessary to produce the drift current calculated in (a).

(c) Assuming that the field found in (b) sets the scale for the electric field in the diffusion
region, show that the change in ¢ across the diffusion region is of order (kgT/e)(n;/N ;).

(d) Why is this indeed negligible?

6. Saturation Current

Estimate the size of the saturation electric current in a p-n junction at room temperature, if the
band gap is 0.5 eV, the donor (or acceptor) concentrations 10'®/cm?, the recombination times
1073 second, and the diffusion lengths 10”4 cm.

26 Since we are not in equilibrium, i, need not equal .



